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PREFACE

This Memorandum was prepared as part of RAND's continuing study
of Satellite Meteorology for the Wational Aeronautics and Space
Administra’ion under contract number NASr-21i{07). It should be useful
in estimating source distributions in stellar and planetary atmos-

pheres based on observations of emergent intensity patterns.






SUMMARY

A finite homogeneous slab which absorbs radiation and scatters
it isotropically possesses internal isotropic sourc s of radiation.
The authors first show how to determine the intensity of the emergent
radiation, making use of invariant imbedding techniques, and then
show how to determine the distribution of the internal sources that
best accounts for an observed emergent radiation pattern. This
inverse problem is viewed as a nonlinear two-point boundary value

problem which can be resolved numerically using quasilinearization.
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1. TINTRODUCTION

A basic problem in science and engineering is inferring causes
on the basis of observed effects. In the construction of model
stellar and planetary atmospheres and in the stucdy of planetary

r
entry phenomena, this problem is particularly sxgnificant.{\zg_this

Memorandum we shall discuss some aspects of this problem in rzlation

to the ability of the modern computer to int:egrate systems of a

thousand or more ordinary nonlinear differential equations.

Tnhe physical situaticn is as follows: A slab of finite optical
thickness absorbs radiation and scatters it isotropically. It
possesses internal sources of isotropic radiation. First, we dis-

—l
cuss the dire<t problem of determining the intensity of the radia-
tion emerging from the slab, with particular emphasis on its angular
distribution. We use standard ideas from the theory of invariant
. . (1,2) .
imbedding; the X and Y functions of Chandrasekhar play a
fundamental role.(3) Then we shift to the inverse problem.

We assume that measurements of the emergent radiation field are
made, and it is desired to determine the distribution of internal
sources which best explains the measurements. This is viewed
mathematically as a nonlinear two-point boundary value problem

(4,5)

which is solved numerically using quasilinearization. We coun-
cluds with a discussion of some of the extensions of .“e model which
are possible.

The importence of such problems was brought out in conversatioas

with Dr. Ralph Zirkind of the Advanced Research Projects Agency.



II. DERIVATION OF THE BASIC EQUATIONS

Consider a homogeneous slab bounded by two planes separated by
an optical distance Xq The slab both absorbs radiation and scatters
it isvtropically, the albedo for single scattering is }. Within
the slab are isotropic sources of radiation. At each point y above
the bettom surface, the strength of the source is B{y) per unit
volume per unit solid angle per unit time.

We first derive computationally useful equations for the
intensity of the radiation emerging from the top surface. To do this,
we consider the slab extending from the bottom to the optical alti-
tude x, add a layer of thickness A, and note the changes that occur
in the intensity of the vrsdiation emerging from the top of the slab,

Let

T(v,x)dv = the rate of emission of energy ner unit horizoental
area through the upper surface of a slab of thick-
ness x, having a direction cosine, with respect (1)
to the upward-directed normal, between v and

v + dv.
In addition let

p(v,x)dv = the fraction of the energy which is isotropically
emitted at the top of the slab of thickness x and
(2)

which ultimately emerges from the top with a di-

rection cosine between v and v + dv.



Then we may write
1
L

T(v,x+A)dv = (L-ésT(v,x)dv + |47 BXx) b +-S T(v', x)dv’ 0 p(v,x)dv
0

(3)
+ o(b8).

The first term on the rignt-hand side accounts for the losses en-
countered in passing through the slab of thickness A. The first
factor in the second term is the total rate of production of scattered
radiation in a cylinder with unit base area and altitude A, located
at the top of the slab of thickness x. The second factor is the
fraction of such radiation which ultimately emerges from the top with
a direction cosine v. The third term, o(d), accounts for all
higher order processes and consists of terms in & of powers higher
than the first. The limiting fcmm, as A tends to zero, is the partial
differential-integral equation
1
Tx(v,x) = - % T(v,x) + 4np(v,x)B(x) + Ap(v,x) S T(v’,x) 2%; . (4)
0
The slab of thickness 0 is easily analyzed. We assume the bottom

surface is a perfect absorber which leads to the condition
T(v,0) = 0. (5)

Situations in which the bottom surface is an emit:ter and a reflector

are readily treated, though we do not discuss them here.



In order to integrate Eq. (4) it is necessary to derive an

equation for the function p(v,x). Let us introduce the function

3(v,x)dv = the fraction of the energy isotropically emitted
at the top of the slab of thickness x which
ultimately emerges from the bottom with a direc- (6)
tion cosine, with respect to the downward-directed

normal, between v and v + dv.

Then we may write

1
p(v,xH) = p(v,0) + a(v,0 A § a0’ B +0) . 7
O

In Eq. (7) we have considered the slab of thickness x + A to be made
by adding a slab of thickness A to the bottom of a slab of thick-

ress x. In addition, we have

1
Axt) = 90 (-8 +p0r fawioa H o). @)
0

The limiting forms of these equations, as A tends to zero, are

1
P (V,x) = X q(v,X) S q(v’,x) i:-,'-; (9)
0
and
1
q, (v,%) = = 2 q(v,0 + 4 pv,0) § a0 & (10)

0



For thin slabs of thickness A we have

2
p(v,8)dv = ZLEY 4 0@p), (11)
a(v,8)dv = 3 dv + 0(a). - a»
Thus

1
p(v,0) =3, (13)

1
q(v,0) = 5 . (14)

Our basic equations are
¢ dv’ 1
\
po=rafav 0%, pe,0 =3, (15)
0
1 ¢ dv’ 1

\'

qx=-;q+>~p5q(V’,X>—;,—,, 9(v,0) =5, (16)
0
1 7
Tx = - % T+4mpB+ap S T(v’,x) 2%7 , T(v,0) = 0. (17)
0

Experierce with many similar systems of nonlinear differential-integral
equations leads us to believe that this system can be readily integrated
numerically by approximating the integrals through the use of finite

sums with Gaussian quadrature formulas.(l’z)

Before we discuss this, we will make several substitutions to

put the system of equations (15)-(17) into a more convenient form.



s - e -

6
We write
\ 1
P(v,X) = 3 X(v,%), (18)
1.
q(V:X) = 5 1.(\',}(), (19)

so that Egs. (15) and (16} become

1
1 dv’
X, =g r Y[ Y0v0 S5, Xm0 =1, (20)
0
1 I'4
_ L1y !y _
Yx—-vY-i-zX(S)Y(v,x)—-v—,, Y(v,0) = 1. (21)

Thus X and Y are the standard X and Y functions of radiative trans-

fer.(3’6’7) The intensity of the radiation emerging from the upper

surface of the slab of thickness x with direction cosine v is denoted

t (v, x) and is given by the formula

2m v t(v,x) = T(v,x). (22)

With this substitution, Eq. (17) becomes

1
=4 B AX : ) _
L= t+3 X + e g t(v/,x)dv’, t(v,0) = 0. (23)



177, APPROXIMATE SYSTEM OF ORDINARY DIFFERENTIAI EQUATIONS

Our basic system of equations contains integrals ou the interval
(0,1). We approximate such an integral of a funccion g(v) using a

Gaussian quadrature formula of order N,

1 N
§ sav = D w s, 24
0 .

i=1

where V.o i=1,2,...,N, are the Christoffel numbers, and Vi i=1,2,...,N,
are the abscissas at which the integrand is to be evaluated. These

are tabulated in Ref. 2. From experience ir similar problems,(7’8) we
expect that N=7 will yield high accuracy. Let us then introduce the

functions xi(x), yi(x) and ti(x), 0 <x < Xy A8 solutions of the

system of ordinary differential equations

) N W, '
X, == )y E — = ’
xi > )\ yi yj v, ) Xi (0) 1, (75)
i=1 !
. “
yl = - v—- yi + '2' A X yj V. 3 }'i(o) =1 ? (26)
1 _]=1 ]
. 1 B A X
ti=-;;ti+;;xi+.z’: Xy 35_ £y Wy £, (0) =0, (27)

i=1,2,.00 ,Nu



This is a nonlinear system of 3N ordinary differential) equations with
a complete system of initial conditions. Its integration on a modern
computer is routine for 0 < x = Xy In this way we produce the values

of the emergent intensity at the top, t(vi,xo), i=1,2,...,N, for a

given internal source distribution B(y), 0 <y < XGe



IV, INVERSE PROBLEM AND QUASILINEARIZATION

Now let us turn to the problem of detemmining the source distri-
bution function B(y) which would best explain an observed emergent

intensity pattern. First we will consider the case in which
. 2
B(y) = a+by +cy, (28)

where a, b, aud ¢ are the three constants tc be determined. We
suppose that the observed intensity of the emergent radiation with

direction cosine A is bi; i.e.,
ti(xo) 2= bi , 1i=1,2,...,N. (29)

We wish to minimize the sum of the squares of the deviations,

X 2
S =Z {tj(xo) - bj} s

j=1

through an appropriate choice of the constants a, b, ¢, which enter
into Eqs. (25), (26), and (27) through B.
This problem is readily solved numerically using the quasilineari-

(4,9)

zation_ tcchtnique, We now present the basic formalism. A

system of M equations is written in vector form
x = f(x,q) , x(0) = ¢, (30)

where o is an R~dimensional vector constant. We wish to determine

the vector o 80 as to minimize the form
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F=(x(T) -8, Q=(L, - B)), (31)

where Q is a positive definite square matrix of order M, and B is a
given vector. We consider ¥ to be a function of time satisfying the

differential equation
« = 0. (32)

Now the initial value of o is unknown. Thus, our original problem

is equivalent to one in which

y =gly) , vy =w, © o (33)

and some of the components of w, say the first L, are free, and the re-
maining ones are specified. We wish to minimize a quadratic form in
y(T), the final value of y. This can be done by starting with an
initial approximation, w = w(o), and integrating the system, Eq. (33),
to produce y(o)(t), 0 st <T. The next apprcximation is produced by

finding y(l)(t) so that

7P =36 P -y @y 4 g, (34)
where F is minimized; J(y(o)) is the Jacobian matrix

agi

J = omewesm
ij o
J yj

(35)

This is done by numerically producing an appropriate system of L
independent solutions of the homogeneous equation correSponding to
Eq. (34) and also a particular solution. In an obvious notation, the

possible solutions of Eq. (34) are
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L

(1) _ :
i=1
where s i=1,2,...,N, are arbitrary constants. The minimizing values

of co i=1,2,...,L, are determined by substituting y(l)(T) (as deter-
mined from Eq. (36)) into F {from Eq. (31)). A linear algebraic
system vf cquations for the optimal choices of o i=1,2,...,L,

results from

] i=1’2,‘0.,Ll (37)

Many previous calculations attest to the efficacv of the procedure,
However, at times, special devices are reguired to carry through all

(4,10 The procedure is then repeated to produce y(z)(t),

the steps.
and so on. When the initial estimate is sufficiently gocd, the
process wiil converge quadratically; that is, the numbe. of correct
digits in each approximant doubles asymptoticaily.

The case of a layered slab is discussed in Ref. 8.

If B(y) is known only as the solution of a differential equatidn

involving some unknown constant vector 3

. g
: -55 = g(v,8), (38)

essentially the same procedure is used. Equation (58) is adjoined to

11
the system of Eqs. (25)-(27), and the calculation proceeds as before.( )
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V., DISCUSSION

In the previous paragraphs we have indicated that a judicious
use of concepts from the theories of invariant imhbedding 2:.d quasi-
linearization, togethef with modern digital ccmputers, could lead to
the detemmination of ianternal source distributioar using external
field measurements. It is possible to examine ine effects of errors
in the measurements on the accuracyv of the source distribution
estimation. This might be of value in planning experiments. In
7 addition, the results of the calculations might serve as a stimulus
tv the development cf new theories concerning the sources.

It would probably be necessary to start a computational program
with the simple physical model sketched. The basic invariant imbedding

equations for various generalizations are available. These include

spherical and cylindrical! geometry, time dependence,(z) anisotropy
. 9) . . . 12)
of the scattering law, inhomogeneity of the medium, and energy

(13)

dependence.
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